Similarity among epilepsy genes

September – 13th Eduardo Pérez-Palma PhD

Outline

- Gene similarity and paralog conservation
- Leveraging gene similarity for variant interpretation:
 - Paralog z-score
 - Identification of Pathogenic Enriched Regions (PERs)
 - User-friendly web application
- Summary

Outline

- Gene similarity and paralog conservation
- Leveraging gene similarity for variant interpretation:
 - Paralog z-score
 - Identification of Pathogenic Enriched Regions (PERs)
 - User-friendly web application
- Summary

Developmental Epileptic Encephalopathies (DEEs)

Severe & complex

Monogenic

Incidence: ~1:6.000

Developmental Epileptic Encephalopathies (DEEs)

McTague A. et al, 2015

Developmental Epileptic Encephalopathies (DEEs)

McTague A. *et al,* 2015

Measuring gene similarity

Across species (Orthologs) Across human related genes (Paralogs-families)

SCN1A Human

Scn1a Mice

scn1a Zebrafish

7

SCN1A Human

SCN2A Human

SCN3A Human

Ortholog similarity facilitates disease model generation

Across species (Orthologs)	ELSEVIER journal homepage: www.elsevier.com/locate/yebeh
	Cannabis constituents reduce seizure behavior in chemically-induced and <i>scn1a</i> -mutant zebrafish
SCN1A Human	Cammi Thornton, Kennedy E. Dickson, Dennis R. Carty, Nicole M. Ashpole, Kristine L. Willett * Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
Scn1a Mice	BRIEF COMMUNICATION Epilepsia
<i>scn1a</i> Zebrafish	Focal and generalized seizure activity after local hippocampal or cortical ablation of $Na_V 1.1$ channels in mice
	Nico A. Jansen ¹ Anisa Dehghani ¹ Cor Breukel ¹ Else A. Tolner ^{1,2} Arn M. J. M. van den Maagdenberg ^{1,2}

Paralog similarity facilitates variant interpretation

RESEARCH

Open Access

Gene family information facilitates variant interpretation and identification of diseaseassociated genes in neurodevelopmental disorders

Dennis Lal^{1,2,3,4,5+†}, Patrick May^{6+†}, Eduardo Perez-Palma^{4,5}, Kaitlin E. Samocha^{2,3,7}, Jack A. Kosmicki^{2,3}, Elise B. Robinson^{2,3,8}, Rikke S. Møller^{9,10}, Roland Krause⁶, Peter Nürnberg^{4,11,12}, Sarah Weckhuysen^{13,14,15}, Peter De Jonghe¹³, Renzo Guerrin¹⁶, Lisa M. Niestroj⁴, Juliana Du⁴, Carla Marini¹⁶, EuroEPINOMICS-RES Consortium, James S. Ware¹⁷, Mitja Kurki^{2,3}, Padhraig Gormley^{2,3}, Sha Tang¹⁸, Sitao Wu¹⁸, Saskia Biskup¹⁹, Annapurna Poduri²⁰, Bernd A. Neubauer²¹, Bobby P. C. Koeleman²², Katherine L. Helbig^{18,23}, Yvonne G. Weber^{24,25}, Ingo Helbig^{23,26,27,28}, Amit R. Majithia²⁹, Aarno Palotie^{2,3,30} and Mark J. Daly^{2,3,30*}

Method

Identification of pathogenic variant enriched regions across genes and gene families

Eduardo Pérez-Palma,^{1,2} Patrick May,³ Sumaiya Iqbal,^{4,5} Lisa-Marie Niestroj,¹ Juanjiangmeng Du,¹ Henrike O. Heyne,^{4,5,6} Jessica A. Castrillon,¹ Anne O'Donnell-Luria,⁴ Peter Nürnberg,¹ Aarno Palotie,^{4,5,6} Mark Daly,^{4,5,6} and Dennis Lal^{1,2,4,5,7} Across human related genes (Paralogs-families)

SCN1A Human

SCN2A Human

SCN3A Human

Outline

- Gene similarity and paralog conservation
- Leveraging gene similarity for variant interpretation:
 - Paralog z-score
 - Identification of Pathogenic Enriched Regions (PERs)
 - User-friendly web application
- Summary

Many DEEs associated genes are related and belong to gene families

ALDH7A1 DNM1 KCNB1 PRICKLE2 SLC6A1 ALG13 EEF1A2 KCNC1 PRRT2 SNIP1 ARHGEF9 EPM2A KCNMA1 RELN SPTAN1 KCNQ2 ARX GABRA1 SCARB2 SRPX2 ST3GAL3 ASAH1 SCN1A GABRB3 KCNQ3 CDKL5 GABRG2 KCNT1 SCN1B **STRADA** CHD2 GNA01 KCTD7 SCN2A STX1B CHRNA2 GOSR2 LGI1 SCN8A STXBP1 CHRNA4 **GRIN1** MEF₂C SCN9A SYN1 SIAT9 NHLRC1 CHRNB2 **GRIN2A** SYNGAP1 CLN8 **GRIN2B** PCDH19 SIK1 SZT2 **CNTNAP2** HCN1 PLCB1 SLC13A5 TBC1D24 CPA6 **WWOX HNRNPU PNKP** SLC25A22 **CSTB** IER3IP1 **PNPO** SLC2A1 DEPDC5 KCNA2 PRICKLE1 SLC35A2

List of epilepsy associated and "potentially associated" genes

EpiPM Consortium 2015

Genes of the same gene family have the same ancestral gene

Paralogs have high sequence similarity

Paralog conservation is very different than Ortholog conservation

Alignment of Homo Sapiens, Mus Musculus and Bos Taurus *SCN1A* sequence

Alignment of Homo Sapiens *SCN1A-SCN11A* sequences

Paralogs have higher structural similarity

Using gene similarity within families to facilitate variant interpretation

Gene family alignment

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Paralog 1	Ν	L	Р	F	V	I	Т	L	D	-	G	-	Ν	L	Ρ	Κ	Ν	-	G	V
Paralog 2	D	G	Ρ	F	V	1	Т	L	Т	L	G	-	D	Q	А	-	Ν	L	G	V
Paralog 3	G	S	-	F	V	1	Т	L	Т	L	G	-	D	Q	А	-	Ν	L	G	V
Paralog 4	I	D	-	F	V	1	Т	S	Ν	L	G	D	Ν	L	Ρ	Κ	Ν	L	G	V
Paralog 5	D	Q	А	F	V	1	Т	С	Ν	G	G	D	D	G	Ρ	Κ	Ν	G	G	V
Paralog 6	Ν	L	Ρ	F	V	I	Т	L	D	L	G	D	G	S	-	Κ	Ν	L	G	V
Paralog 7	D	G	Ρ	F	V	V	Т	L	Т	L	G	D	D	G	Ρ	Κ	Ν	L	G	V
Paralog 8	G	S	-	F	V	I	Т	L	Т	L	G	-	G	S	-	Κ	Ν	L	G	V
Paralog 9	Ι	D	-	F	V	V	Т	S	Ν	L	G	-	Ι	D	-	Q	Ν	L	G	V
Paralog 10	D	Q	А	F	V		Т	С	N	L	G	-	1	D	-	Q	N	L	G	V

Using gene similarity within families to facilitate variant interpretation

Gene family alignment

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Paralog 1	Ν	L	Ρ	F	V	1	Т	L	D	-	G	-	Ν	L	Р	Κ	Ν	-	G	V
Paralog 2	D	G	Ρ	F	V	1	Т	L	Т	L	G	-	D	Q	Α	-	Ν	L	G	V
Paralog 3	G	S	-	F	V	1	Т	L	Т	L	G	-	D	Q	Α	-	Ν	L	G	V
Paralog 4	Ι	D	-	F	V	1	Т	S	Ν	L	G	D	Ν	L	Ρ	К	Ν	L	G	V
Paralog 5	D	Q	A	F	V	1	Т	С	Ν	G	G	D	D	G	Ρ	К	Ν	G	G	V
Paralog 6	Ν	L	Ρ	F	V	1	Т	L	D	L	G	D	G	S	-	κ	Ν	L	G	V
Paralog 7	D	G	Ρ	F	V	V	Т	L	Т	L	G	D	D	G	Р	К	Ν	L	G	V
Paralog 8	G	S	-	F	V	1	Т	L	Т	L	G	-	G	S	-	κ	Ν	L	G	V
Paralog 9	Ι	D	-	F	V	V	Т	S	Ν	L	G	-	1	D	-	Q	Ν	L	G	V
Paralog 10	D	Q	A	F	V	I	Т	С	Ν	L	G	-	1	D	-	Q	Ν	L	G	V
-						,		•												
C	nno	er		d r	PU	ior		are	m a	or	Δ									

likely to hold key functional features Non conserved regions are less biologically relevant

We developed score for every amino acid of gene-family members

Paralog conservation vs patient variants

Outline

- Gene similarity and paralog conservation
- Leveraging gene similarity for variant interpretation:
 - Paralog z-score
 - Identification of Pathogenic Enriched Regions (PERs)
 - User-friendly web application
- Summary

Where would patient and gnomAD variants fall?

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Paralog 1	Ν	L	Р	F	V	1	Т	L	D	-	G	-	Ν	L	Ρ	К	Ν	-	G	V
Paralog 2	D	G	Ρ	F	V	1	Т	L	т	L	G	-	D	Q	А	-	Ν	L	G	V
Paralog 3	G	S	-	F	V	1	Т	L	Т	L	G	-	D	Q	А	-	Ν	L	G	V
Paralog 4	1	D	-	F	V	1	Т	S	Ν	L	G	D	Ν	L	Ρ	Κ	Ν	L	G	V
Paralog 5	D	Q	А	F	V	1	Т	С	Ν	G	G	D	D	G	Ρ	Κ	Ν	G	G	V
Paralog 6	Ν	L	Ρ	F	V	1	Т	L	D	L	G	D	G	S	-	Κ	Ν	L	G	V
Paralog 7	D	G	Ρ	F	V	V	Т	L	Т	L	G	D	D	G	Ρ	Κ	Ν	L	G	V
Paralog 8	G	S	-	F	V	1	Т	L	Т	L	G	-	G	S	-	Κ	Ν	L	G	V
Paralog 9	1	D	-	F	V	V	Т	S	Ν	L	G	-	1	D	-	Q	Ν	L	G	V
Paralog 10	D	Q	А	F	V	1	Т	С	Ν	L	G	-	Т	D	-	Q	Ν	L	G	V

Non conserved regions are less biologically relevant

Conserved regions are more likely to hold key functional features

Hypothesis

Gene family alignment

Missense variant mapping: binary annotation

Population missense variants

Aligment	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Paralog 1	Ν	L	Р	F	V	1	Т	L	D	-	G	-	Ν	L	Ρ	Κ	Ν	-	G	V
Paralog 2	D	G	Ρ	F	V	1	Т	L	Т	L	G	-	D	Q	А	-	Ν	L	G	V
Paralog 3	G	S	-	F	V	1	Т	L	Т	L	G	-	D	Q	А	-	Ν	L	G	V
Paralog 4	1	D	-	F	V	1	Т	S	Ν	L	G	D	Ν	L	Ρ	Κ	Ν	L	G	V
Paralog 5	D	Q	Α	F	V	1	Т	С	Ν	G	G	D	D	G	Ρ	Κ	Ν	G	G	V
Paralog 6	Ν	L	Р	F	V	1	Т	L	D	L	G	D	G	S	-	Κ	Ν	L	G	V
Paralog 7	D	G	Ρ	F	V	V	Т	L	Т	L	G	D	D	G	Ρ	Κ	Ν	L	G	V
Paralog 8	G	S	-	F	V	1	Т	L	Т	L	G	-	G	S	-	Κ	Ν	L	G	V
Paralog 9	1	D	-	F	V	V	Т	S	Ν	L	G	-	Т	D	-	Q	Ν	L	G	V
Paralog 10	D	Q	A	F	V		Т	С	Ν	L	G	-	1	D	-	Q	Ν	L	G	V

Is the aminoacid site mutated at least once?

YES=1 NO=0

Patients missense variants

Missense variant mapping: binary annotation

Population missense variants

Aligment	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Paralog 1	Ν	L	Ρ	F	V	1	Т	L	D	-	G	-	Ν	L	Ρ	Κ	Ν	-	G	V
Paralog 2	D	G	Ρ	F	V	1	Т	L	Т	L	G	-	D	Q	А	-	Ν	L	G	V
Paralog 3	G	S	-	F	V	1	Т	L	Т	L	G	-	D	Q	А	-	Ν	L	G	V
Paralog 4	1	D	-	F	V	1	Т	S	Ν	L	G	D	Ν	L	Ρ	К	Ν	L	G	V
Paralog 5	D	Q	А	F	V	1	Т	С	Ν	G	G	D	D	G	Ρ	К	Ν	G	G	V
Paralog 6	Ν	L	Ρ	F	V	1	Т	L	D	L	G	D	G	S	-	Κ	Ν	L	G	V
Paralog 7	D	G	Ρ	F	V	V	Т	L	Т	L	G	D	D	G	Ρ	К	Ν	L	G	V
Paralog 8	G	S	-	F	V	1	Т	L	Т	L	G	-	G	S	-	К	Ν	L	G	V
Paralog 9	1	D	-	F	V	V	Т	S	Ν	L	G	-	1	D	-	Q	Ν	L	G	V
Paralog 10	D	Q	А	F	V	1	Т	С	Ν	L	G	-	1	D	-	Q	Ν	L	G	V

Patients missense variants

Population burden

															-						
			0.1	0.1	0.1	0.3	0.5	1	1.4	1.6	1.4	1.1	0.7	0.3	0.1	0.1	0.2	0.1			
Paralog 1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	
Paralog 2	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	
Paralog 3	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	
Paralog 4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
Paralog 5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
Paralog 6	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	
Paralog 7	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	
Paralog 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Paralog 9	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	
Paralog 10	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	

Patient burden

Missense burden analysis

Population burden 4.3 4.2 4 3.8 3.1 2.4 1.7 1.6 1.7 2.2 3.1 3.8 4 4.2 4.3 4.3

			0.1	0.1	0.1	0.3	0.5	1	1.4	1.6	1.4	1.1	0.7	0.3	0.1	0.1	0.2	0.1		
Paralog 1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0
Paralog 2	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
Paralog 3	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
Paralog 4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Paralog 5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Paralog 6	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Paralog 7	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
Paralog 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Paralog 9	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
Paralog 10	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0

Burden analysis

Missense burden analysis: Identification of PERs

Population burden

			4.3	4.2	4	3.8	3.1	2.4	1.7	1.6	1.7	2.2	3.1	3.8	4	4.2	4.3	4.3		
Paralog 1	1	1	1	1	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1
Paralog 2	1	1	1	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1	0	1
Paralog 3	1	1	1	1	0	1	1	1	0	0	0	1	0	1	0	1	1	1	1	1
Paralog 4	0	1	1	1	1	1	1	0	0	0	0	0	1	1	1	0	1	1	1	1
Paralog 5	1	1	1	1	1	1	0	1	0	0	0	0	1	0	1	1	1	1	1	1
Paralog 6	1	0	1	0	1	0	1	1	0	0	0	1	1	1	1	1	0	1	1	1
Paralog 7	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	0	1	1	1
Paralog 8	1	1	0	1	1	0	1	0	0	0	0	0	1	1	1	0	1	1	1	1
Paralog 9	1	1	1	1	0	1	1	1	0	0	0	0	1	0	1	1	1	1	0	1
Paralog 10	1	1	1	1	0	1	0	1	1	0	1	1	0	1	1	1	1	1	1	0

Patient burden

			0.1	0.1	0.1	0.3	0.5	1	1.4	1.6	1.4	1.1	0.7	0.3	0.1	0.1	0.2	0.1		
Paralog 1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0
Paralog 2	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
Paralog 3	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
Paralog 4	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Paralog 5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Paralog 6	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Paralog 7	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
Paralog 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Paralog 9	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
Paralog 10	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0

Example: The voltage gate sodium Family

Example: The voltage gate sodium Family (Zoom to PER 2)

Align	SCN1A	SCN2A	SCN3A	SCN9A	SCN8A	SCN4A	SCN5A	SCN10A	SCN7A	SCN11A	PER	Gene:Disease
455	I_415	I_417	V_416	I_394	V_403	I_439	V_405	V_389	A_386	I_392	Neutral	N/A
456	N_416	N_418	N_417	N_395	N_404	N_440	N_406	N_390	S_387	N_393	PER2	SCN9A :Erythermalgia primary,Erythermalgia primary,Primary erythromelalgia,not provided; SCN4A :Myotonia,Hyperkalemic Periodic Paralysis Type 1; SCN5A :Long QT syndrome,Brugada syndrome,Congenital long QT syndrome not provided
457	L_417	L_419	L_418	L_396	L_405	L_441	L_407	L_391	L_388	L_394	PER2	N/A
458	I_418	I_420	I_419	I_397	I_406	I_442	I_408	I_392	F_389	T_395	PER2	N/A
459	L_419	L_421	L_420	L_398	L_407	L_443	L_409	L_393	L_390	L_396	PER2	SCN8A:Intellectual disability and epilepsy,not provided,Early infantile epileptic encephalopathy 13;SCN5A:Long QT syndrome,Long QT syndrome;SCN11A:Neuropathy, hereditary sensory and autonomic, type VII not provided

- Gene-family sequence alignment shows for all members the sequence and mutations
 - Pathogenic enriched regions (PERs) significantly accumulates patients' mutations
 - PERs sites can help the interpretation of variants in related genes

Example: The voltage gate sodium Family

Align	SCN1A	SCN2A	SCN3A	SCN9A	SCN8A	SCN4A	SCN5A	SCN10A	SCN7A	SCN11A	PER	Gene:Disease
455	I_415	I_417	V_416	I_394	V_403	I_439	V_405	V_389	A_386	I_392	Neutral	N/A
456	N_416	N_418	N_417	N_395	N_404	N_440	N_406	N_390	S_387	N_393	PER2	SCN9A :Erythermalgia primary,Erythermalgia primary,Primary erythromelalgia,not provided; SCN4A :Myotonia,Hyperkalemic Periodic Paralysis Type 1; SCN5A :Long QT syndrome,Long QT syndrome,Brugada syndrome,Congenital long QT syndrome not provided
457	L_417	L_419	L_418	L_396	L_405	L_441	L_407	L_391	L_388	L_394	PER2	N/A
458	I_418	I_420	I_419	I_397	I_406	1_442	I_408	I_392	F_389	T_395	PER2	N/A
459	L_419	L_421	L_420	L_398	L_407	L_443	L_409	L_393	L_390	L_396	PER2	SCN8A:Intellectual disability and epilepsy,not provided,Early infantile epileptic encephalopathy 13;SCN5A:Long QT syndrome,Long QT syndrome;SCN11A:Neuropathy, hereditary sensory and autonomic, type VII not provided

- Gene-family sequence alignment shows for all members the sequence and mutations
 - Pathogenic enriched regions (PERs) significantly accumulates patients mutations
 - PERs sites can help the interpretation of variants in related genes
 - PERs capture sites never observed in patients surrounded by pathogenic variants

Outline

- Gene similarity and paralog conservation
- Leveraging gene similarity for variant interpretation:
 - Paralog z-score
 - Identification of Pathogenic Enriched Regions (PERs)
 - User-friendly web application
- Summary

We deployed our all our results into a user-friendly online tool

Home	PER identification	About	Video-Tutorials
			PER viewer Explore pathogenic variant enriched regions (PERs) across genes and gene families
			Gene search
			Submit
			PER viewer is a tool for missense variant interpretation. Conserved amino acids among gene-family members are enriched with patient variants and constrained from variants in the general population, here we provide a statistical framework that is able to identify PERs across genes and gene families.

- Input any Gene
- If the gene belongs to a family, results will be displayed for the family
- Main Plot shows Burden analysis results and PER identified.

- The user can swicht between family wise and gene wise analysis
- Paralog conservation is also provide alongside PERs
- The user can Zoom in regions of interest

nily	Choose Plot				
2614	M Whole Family	SCN1A SCN2A SCN3A	SCN9A SCN8A SCN4A	SCN5A SCN10A S	CN7A SCN11A
sense hurden analysis Par	alog Conservation				
sense our derranarysis	and conservation				
					Pathogenic missense burden (ClinVar/HGMD)
l.					Pathogenic Enriched Region (PER)
2					
l+			+		PEBIO
					PERS
					PERG
					PERA
					PERS
					PERS
		(PER2)			(PERIS)
		(PER2)			PER16 PER7
		(PER2)			(PERIS (PERI) (PERI)
		(PER2)			(PERIS) (PERI) (PERI) (PERI) (PERI)
PER		(PER2)-			PRR13 (PRR7 (PRR7) (PRR13) (PRR13) (PRR13) (PRR13)

- Below main plot, table mode shows family and mutation aligments
- The user can explore the sequence and mutations observed
- Sites without known patient variants can be observed surrounded by pathogenic mutations.

Outline

- Gene similarity and paralog conservation
- Leveraging gene similarity for variant interpretation:
 - Paralog z-score
 - Identification of Pathogenic Enriched Regions (PERs)
 - User-friendly web application
- Summary

Integration of gene similarity to the ACMG guidelines for variant interpretation

Moderate
PM1: Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation

Supporting PP3: Multiple lines of computational evidence support a deleterious effect

More information

Method

Lal et al. Genome Medicine (2020) 12:28 https://doi.org/10.1186/s13073-020-00725-6

Genome Medicine

RESEARCH

Open Access

Gene family information facilitates variant interpretation and identification of diseaseassociated genes in neurodevelopmental disorders

Dennis Lal^{1,2,3,45+†}, Patrick May^{6+†}, Eduardo Perez-Palma^{4,5}, Kaitlin E. Samocha^{2,3,7}, Jack A. Kosmicki^{2,3}, Elise B. Robinson^{2,3,8}, Rikke S. Møller^{9,10}, Roland Krause⁶, Peter Nürnberg^{4,11,12}, Sarah Weckhuysen^{13,14,15}, Peter De Jonghe¹³, Renzo Guerrini¹⁶, Lisa M. Niestroj⁴, Juliana Du⁴, Carla Marini¹⁶, EuroEPINOMICS-RES Consortium, James S. Ware¹⁷, Mitja Kurki^{2,3}, Padhraig Gormley^{2,3}, Sha Tang¹⁸, Sitao Wu¹⁸, Saskia Biskup¹⁹, Annapuma Poduri²⁰, Bernd A. Neubauer²¹, Bobby P. C. Koeleman²², Katherine L. Helbig^{18,23}, Yvonne G. Weber^{24,25}, Ingo Helbig^{23,26,27,28}, Amit R. Majithia²⁹, Aarno Palotie^{2,3,30} and Mark J. Daly^{2,3,30*} Identification of pathogenic variant enriched regions across genes and gene families

Eduardo Pérez-Palma,^{1,2} Patrick May,³ Sumaiya Iqbal,^{4,5} Lisa-Marie Niestroj,¹ Juanjiangmeng Du,¹ Henrike O. Heyne,^{4,5,6} Jessica A. Castrillon,¹ Anne O'Donnell-Luria,⁴ Peter Nürnberg,¹ Aarno Palotie,^{4,5,6} Mark Daly,^{4,5,6} and Dennis Lal^{1,2,4,5,7}

¹ Cologne Center for Genomics, University of Cologne, Cologne, NRW, Germany; ²Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; ³Luxembourg Centre for Systems Biomedicine, University Luxembourg, Esch-sur-Alzette, Luxembourg; ⁴Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA; ⁵Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; ⁶Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; ⁷Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA

The collective study of similar genes can help us increase our understanding of individually rare DEEs

The collective study of related genes may help us increase our understanding of individually rare DEEs

Acknowledgements

Cleveland Clinic, OH, US

Arthur StefanskiCharis EngCostin LeuImad NajmJavier LopezIgnacio MataElif Irem SarihanDennis LalVictoria SmukIgnacio Mata

Stanley Center & Broad Institute, US Sumaiya Iqbal Arthur J. Campbell Mark Daly

University of Cologne, Germany Lisa-Marie Niestroj Marie Gramm Tobias Bruenger Peter Nürnberg

International Collaborators

Patrick May, University of Luxembourg, Luxembourg Rikke S Møller, Danish Epilepsy Center, Denmark Andreas Brunklaus, Royal Hospital for Children, Glasgow, UK

